Эволюция живых существ может быть понята только в контексте геологического времени.
Во втором делении мейоза хромосомы ведут себя так же, как в митозе, с той лишь разницей, что в результате происшедшего кроссинговера Хроматиды, Прикрепленные к центромере, оказываются не идентичными. Второе деление, при котором происходит деление центромер, ведет к образованию из одного ауксоцита четырех клеток.
По-видимому, на стадии удвоения хромосом тонкие хроматиды в бивалентах разрываются и вновь соединяются концами в местах разрывов. Будучи тесно сближены и перекручены, они часто воссоединяются в несестринских комбинациях, т. е. вместо воссоединения частей сестринских хроматид после разрыва могут соединяться части материнской и отцовской хроматид. Это явление известно под названием Кроссинговера. У некоторых организмов кросеинговер происходит только у особей одного из полов; так, например, у самцов Drosophila и Cal- Limantis он никогда не наблюдался.
Кроме этих механизмов сохранения или увеличения существующего числа хромосом, у организмов, очевидно, должны существовать механизмы для его уменьшения. Механизмы уменьшения большого числа хромосом, наблюдающегося при эндополиплоидии, мало изучены, но есть данные о существовании таких механизмов у насекомых и у растений. У огромного большинства организмов имеется общий механизм уменьшения зиготического числа хромосом до гаме - тического; этот механизм называется Мейозом .
После того как хромосомы разошлись к полюсам веретена, вокруг каждой группы дочерних хромосом образуется новая ядерная оболочка, которая, возможно, строится из материала одной из мембранных систем цитоплазмы. На этой стадии, носящей название Телофазы, животные клетки обычно делятся путем образования перетяжки, а растительные — путем образования клеточной пластинки. На этом, т. е. на формировании двух дочерних клеток, процесс клеточного деления заканчивается.
Генетическая информация клетки содержится в основном в Хромосомах ядра. Многие детали организации хромосом не выяснены. В так называемой Интерфазе, или метаболической стадии, хромосомный материал обыкновенно мало доступен для наблюдения. Иногда обнаруживаются части хромосом, не подвергшиеся характерным изменениям, сопровождающим митоз. Часто один или несколько таких участков хромосом бывают связаны с Ядрышком, обычно хорошо видимым в метаболически активном ядре.
В растительных и животных клетках между канальцами и пузырьками эндоплазматического ретикулума разбросаны митохондрии. Эти сферические и трубковидные образования также имеют двойную пограничную мембрану, внутренний слой которой образует ряд складок в виде поперечных перегородок, или Крист. В митохондриях протекает большинство реакций, связанных с клеточным дыханием, в том числе образование аденозин - трнфосфата.
Самым заметным образованием внутри большинства клеток является, конечно, ядро. Новейшие электронные микрофотографии показывают, что ядро отделено от цитоплазмы двойной мембраной, которую можно называть Ядерной оболочкой. Внутренняя мембрана, по-видимому, окружает содержимое ядра наподобие мешка. Однако наружная мембрана без перерыва переходит в цитоплазматическую мембранную систему, которая может быть выражена в большей или меньшей степени.
Как растительные, так и животные клетки, по-видимому, имеют наружную оболочку, называемую Плазматической мембраной, которая обладает важным свойством избирательной проницаемости. Как показывают данные физических, химических и биологических исследований, эта мембрана представляет собой сложную структуру, состоящую из белковых и липидных молекул, расположенных слоями.
Одним из самых важных результатов развития современных методов научных исследований и появления электронного микроскопа было возрождение интереса к цитологии. Высокая разрешающая способность электронного микроскопа позволила выявить структуры поразительной сложности там, где раньше не находили вообще никакой структуры, что по существу подвело нас к идее о единстве формы и функции на уровне макромолекул и их агрегатов.
Синтез белка происходит главным образом в Рибосомах — цитоплазматических структурах, пространственно обособленных от ядерной ДНК. В рибосомах содержится основная масса РНК цитоплазмы. ДНК служит матрицей, на которой может строиться другая, комплементарная цепь ДНК или же цепь РНК. Таким способом код может быть перенесен на молекулы Информационной РНК, которые, как полагают, переносят его на рибосомы, где происходит синтез белка.